

Functional Description

The ACT16373 contains sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the Latch Enable (LE_{n}) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change states each time its D input changes. When $L E_{n}$ is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of $L E_{n}$. The 3-STATE standard outputs are controlled by the Output Enable ($\overline{\mathrm{OE}}_{\mathrm{n}}$) input. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Tables

Inputs			Outputs
$\mathrm{LE}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	(Previous)

Inputs			Outputs
LE_{2}	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}} \mathrm{I}_{15}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	(Previous)

$=$ HIGH Voltage Leve
= LOW Voltage Level
X = Immaterial
Z = High Impedance
Previous = previous output prior to HIGH-to-LOW transition of LE

Logic Diagrams

Absolute Maximum Ratings（Note 1）		Recommended Operating
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	Conditions
DC Input Diode Current（ $\mathrm{I}_{\text {IK }}$ ）		Supply Voltage（ V_{CC} ） 4.5 V to 5.5 V
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$	－20 mA	
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	Output Voltage（ V_{O} ） 0 V to V_{CC}
DC Output Diode Current（lok）		Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ） $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC Output Source／Sink Current（10）	＋50 mA	Note 1：Absolute maximum ratings are those values beyond which dam－
DC V_{CC} or Ground Current per Output Pin	＋50 mA	age to the device may occur．The databook specifications should be met， without exception to ensure that the system design is reliable over its power supply，temperature，and output／input loading variables．Fairchild does not
Junction Temperature	$+140^{\circ} \mathrm{C}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	v	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \\ & \hline \end{aligned}$
I_{Oz}	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{I}_{\text {CCT }}$	Maximum ICC／Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
1 lc	Max Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
IoLD	Minimum Dynamic Output Current（Note 3）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD					－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min

Note 2：All outputs loaded；thresholds associated with output under test．
Note 3：Maximum test duration 2.0 ms ；one output loaded at a time．

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V) (Note 4)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	5.0	$\begin{aligned} & 3.1 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay LE to O_{n}	5.0	$\begin{aligned} & \hline 3.1 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.9 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Delay	5.0	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Delay	5.0	$\begin{aligned} & 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 7.9 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	V_{Cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 5)	Guaranteed Minimum		
t_{S}	Setup Time, HIGH or LOW, Input to Clock	5.0	3.0	3.0	ns
t_{H}	Hold time, HIGH or LOW, Input to Clock	5.0	1.5	1.5	ns
t_{W}	CS Pulse Width, HIGH or LOW	5.0	4.0	4.0	ns

Capacitance

Symbol	Parameter	Typ	Units	
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
